
pyMultiSerial
Release 1.1.0

unknown

Oct 09, 2022

CONTENTS

1 pyMultiSerial 3
1.1 Overview . 3
1.2 Features . 3
1.3 Requirements . 3
1.4 Installation . 4

2 How to Use 5
2.1 Install . 5
2.2 Import . 5
2.3 Create Object . 5
2.4 Set Properties of Object: . 5
2.5 Define Callback Functions . 5
2.6 Start Monitoring Ports . 7

3 MultiSerial Class 9

4 Callback Functions 11

5 Indices and tables 13

Python Module Index 15

Index 17

i

ii

pyMultiSerial, Release 1.1.0

A Python module for continuous communication with multiple serial ports, based on pyserial module

Features: - Monitor incoming data from multiple serial ports simultaneously. - Detect connections to port automatically
and starts monitoring them. - Detect disconnections from port automatically.

Other pages (online)

• Download Page with releases

• This page, when viewed online is at https://pymultiserial.readthedocs.io/en/latest/ or http://pythonhosted.org/
pyserial/ .

Contents:

CONTENTS 1

http://pypi.python.org/pypi/pymultiserial
https://pymultiserial.readthedocs.io/en/latest/
http://pythonhosted.org/pyserial/
http://pythonhosted.org/pyserial/

pyMultiSerial, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

PYMULTISERIAL

1.1 Overview

A Python module for continuous communication with multiple serial ports, based on pyserial module.

It is released under a free software license, see https://github.com/SunitRaut/pyMultiSerial/blob/main/LICENSE for
more details.

Other pages (online)

• Download Page with releases (PyPi)

• This page, when viewed online is at https://pymultiserial.readthedocs.io/en/latest/ or http://pythonhosted.org/
pymultiserial/ .

1.2 Features

• Monitor multiple serial ports simultaneously.

• Detect connections to port automatically and starts monitoring them.

• Raises a trigger whenever data is received from the port. You can attach callback function to process this data
on-demand.

• Detect disconnections from port automatically.

• You can add your own processing logic to the above events using callback functions

1.3 Requirements

• Python 3+

• If running on Windows: Windows 7 or newer

3

https://github.com/SunitRaut/pyMultiSerial/blob/main/LICENSE
http://pypi.python.org/pypi/pymultiserial
https://pymultiserial.readthedocs.io/en/latest/
http://pythonhosted.org/pymultiserial/
http://pythonhosted.org/pymultiserial/

pyMultiSerial, Release 1.1.0

1.4 Installation

This installs a package that can be used from Python (import pyMultiSerial).

To install for all users on the system, administrator rights (root) may be required.

1.4.1 From PyPI

pySerial can be installed from PyPI:

python -m pip install pymultiserial

Using the python/python3 executable of the desired version (2/3.x).

Developers also may be interested to get the source archive, because it contains examples, tests and the this documen-
tation.

1.4.2 From Conda

pyMultiSerial can be installed from Conda:

conda install pyMultiSerial

or

conda install -c conda-forge pymultiserial

Conda: https://www.continuum.io/downloads

1.4.3 From source (zip/tar.gz or checkout)

Download the archive from http://pypi.python.org/pypi/pymultiserial or https://github.com/sunitraut/pymultiserial/
releases.

Using the python/python3 executable of the desired version (2/3.x).

4 Chapter 1. pyMultiSerial

https://www.continuum.io/downloads
http://pypi.python.org/pypi/pymultiserial
https://github.com/sunitraut/pymultiserial/releases
https://github.com/sunitraut/pymultiserial/releases

CHAPTER

TWO

HOW TO USE

A short guide to get started quickly with this module!

2.1 Install

>>> pip install pyMultiSerial

2.2 Import

>>> import pyMultiSerial

2.3 Create Object

>>> ms = pyMultiSerial.MultiSerial

2.4 Set Properties of Object:

>>> ms.baudrate = 9600
>>> ms.timeout = 2

2.5 Define Callback Functions

Callback functions are the functions defined by you in your program which are triggered by pyMultiSerial module
whenever an event occurs.

The pyMultiSerial module provides 5 callback events for which you can define functions:

1. New Serial Port Connection Found - Allows you to write a function which triggers when a new serial port
connection is found. With this feature, you can perform many operations like authenticating, performing
handshake or simply creating a list of newly connected devices.

2. Data Received on a Serial Port - Allows you to write a function which triggers when any data is received
on the serial port. With this feature, you can process incoming data from serial ports.

5

pyMultiSerial, Release 1.1.0

3. Device disconnected from Serial Port - Allows you to write a function which triggers when any device is
disconnected. With this feature, you can keep track of serial ports that have been disconnected.

4. On Keyboard Interrupt (Ctrl+C) by user - Allows you to write a function which triggers when you force
stop the python script with keyborard interrupt or through your Python IDE. This feature allows you to
perform any clean up activities necessary before exiting your application.

5. Continuous Loop Execution - Allows you to write a function which triggers continuously. With this
feature, you can perform repitive / periodic tasks. Don’t forget to add appropriate delay in this callback
since this event occurs continuously. The user gets to decide what frequency / delay is needed.

Note: All the above callbacks are optional. You need to only program those callbacks which you need.

How to define and register callback function:

>>> def your_func_name(standard_arguments):
>>> Your Statements
>>> End of function
>>> #register callback function
>>> ms.callback_name = your_func_name

Here, your_func_name can be any name as decided by you. Arguments passed to this function should be in accordance
to the standard_arguments as defined in below table. These arguments will be passed from pyMultiSerial module to
your function. callback_name is the property name of the callback event to which you need to assign your function as
shown in above snippet.

Table 1: Table
Event callback_name standard_arguments for callback

function
New Serial Port Connection Found port_connection_found_callback Port Number, Serial Port Object
Data Received on a Serial Port port_read_callback Port Number, Serial Port Object,

Data
Device disconnected from Serial
Port

port_disconnection_callback Port Number

On Keyboard Interrupt (Ctrl+C) by
user

interrupt_callback

Continuous Loop Execution loop_callback

In the above table, there are mainly three types of arguments:

1. Port Number - The Port Number of the port on which the event has occured.

2. Serial Port Object - pySerial Object of the Port on which event has occured. This object can be used to
read, write to the port from your callback function.

3. Data - Data received from Serial Port in String format.

Note: You must include above paramenters in your function definition. However, it is optional to use those parameters.

6 Chapter 2. How to Use

pyMultiSerial, Release 1.1.0

2.6 Start Monitoring Ports

>>> ms.Start()

Caution: Since this module monitors all serial ports simultaneously, ms.Start() is a blocking function. Unless you don’t
stop monitoring using Stop() method, the execution will be stuck at this line. Start() method should ideally be called at
the end of your code. To perform other opertions, you should use the provided callback functions. Caution: Callback
functions should be defined before ms.Start() statement. The Callback functions should be registered with the object
before monitoring is started, else your callback functions won’t be called.

If you need to stop monitoring for any reason, use below statement:

>>> ms.Stop()

2.6. Start Monitoring Ports 7

pyMultiSerial, Release 1.1.0

8 Chapter 2. How to Use

CHAPTER

THREE

MULTISERIAL CLASS

class pyMultiSerial.MultiSerial

__init__()

On creating object of class MultiSerial, port parameters are set up. All ports are configured with the same
parameters.

Start()

Start the monitoring of ports.

Stop()

Stop the monitoring of ports.

Attributes

baudrate(Necessary)

Type
int

Sets baudrate for the serial ports.

timeout(Optional)

Type
int

Sets timeout for the serial ports. Default value = 2 sec

portno_range(Optional)

Type
int

Sets range of port numbers to monitor starting from 0. Default value = 29

monitoring_freq(Optional)

Type
int

Sets monitoring frequency. Default value = 0 msec

port_connection_found_callback(Optional)

Type
function

Sets callback function for Event when new serial port connection is found

9

pyMultiSerial, Release 1.1.0

port_read_callback(Optional)

Type
function

Sets callback function for Event when data is received on any serial port

port_disconnection_callback(Optional)

Type
function

Sets callback function for Event when a port is disconnected

interrupt_callback(Optional)

Type
function

Sets callback function for Event when execution of program is interrupted

loop_callback(Optional)

Type
function

Sets callback function to be executed in continuous loops.

10 Chapter 3. MultiSerial Class

CHAPTER

FOUR

CALLBACK FUNCTIONS

Callback functions are the functions defined by you in your program which are triggered by pyMultiSerial module
whenever an event occurs.

The pyMultiSerial module provides 5 callback events for which you can define functions:

1. New Serial Port Connection Found - Allows you to write a function which triggers when a new serial port
connection is found. With this feature, you can perform many operations like authenticating, performing
handshake or simply creating a list of newly connected devices.

2. Data Received on a Serial Port - Allows you to write a function which triggers when any data is received
on the serial port. With this feature, you can process incoming data from serial ports.

3. Device disconnected from Serial Port - Allows you to write a function which triggers when any device is
disconnected. With this feature, you can keep track of serial ports that have been disconnected.

4. On Keyboard Interrupt (Ctrl+C) by user - Allows you to write a function which triggers when you force
stop the python script with keyborard interrupt or through your Python IDE. This feature allows you to
perform any clean up activities necessary before exiting your application.

5. Continuous Loop Execution - Allows you to write a function which triggers continuously. With this
feature, you can perform repitive / periodic tasks. Don’t forget to add appropriate delay in this callback
since this event occurs continuously. The user gets to decide what frequency / delay is needed.

Note: All the above callbacks are optional. You need to only program those callbacks which you need.

How to define and register callback function:

>>> def your_func_name(standard_arguments):
>>> Your Statements
>>> End of function
>>> #register callback function
>>> ms.callback_name = your_func_name

Here, your_func_name can be any name as decided by you. Arguments passed to this function should be in accordance
to the standard_arguments as defined in below table. These arguments will be passed from pyMultiSerial module to
your function. callback_name is the property name of the callback event to which you need to assign your function as
shown in above snippet.

11

pyMultiSerial, Release 1.1.0

Table 1: Table
Event callback_name standard_arguments for callback

function
New Serial Port Connection Found port_connection_found_callback Port Number, Serial Port Object
Data Received on a Serial Port port_read_callback Port Number, Serial Port Object,

Data
Device disconnected from Serial
Port

port_disconnection_callback Port Number

On Keyboard Interrupt (Ctrl+C) by
user

interrupt_callback

Continuous Loop Execution loop_callback

In the above table, there are mainly three types of arguments:

1. Port Number - The Port Number of the port on which the event has occured.

2. Serial Port Object - pySerial Object of the Port on which event has occured. This object can be used to
read, write to the port from your callback function.

3. Data - Data received from Serial Port in String format.

Note: You must include above paramenters in your function definition. However, it is optional to use those parameters.

12 Chapter 4. Callback Functions

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

13

pyMultiSerial, Release 1.1.0

14 Chapter 5. Indices and tables

PYTHON MODULE INDEX

p
pyMultiSerial, 9

15

pyMultiSerial, Release 1.1.0

16 Python Module Index

INDEX

Symbols
__init__() (pyMultiSerial.MultiSerial method), 9

B
baudrate (pyMultiSerial.MultiSerial attribute), 9

I
interrupt_callback (pyMultiSerial.MultiSerial

attribute), 10

L
loop_callback (pyMultiSerial.MultiSerial attribute),

10

M
module

pyMultiSerial, 9
monitoring_freq (pyMultiSerial.MultiSerial attribute),

9
MultiSerial (class in pyMultiSerial), 9

P
port_connection_found_callback (pyMultiSe-

rial.MultiSerial attribute), 9
port_disconnection_callback (pyMultiSe-

rial.MultiSerial attribute), 10
port_read_callback (pyMultiSerial.MultiSerial

attribute), 9
portno_range (pyMultiSerial.MultiSerial attribute), 9
pyMultiSerial

module, 9

S
Start() (pyMultiSerial.MultiSerial method), 9
Stop() (pyMultiSerial.MultiSerial method), 9

T
timeout (pyMultiSerial.MultiSerial attribute), 9

17

	pyMultiSerial
	Overview
	Features
	Requirements
	Installation
	From PyPI
	From Conda
	From source (zip/tar.gz or checkout)

	How to Use
	Install
	Import
	Create Object
	Set Properties of Object:
	Define Callback Functions
	Start Monitoring Ports

	MultiSerial Class
	Callback Functions
	Indices and tables
	Python Module Index
	Index

